Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Circ Res ; 132(3): 290-305, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2194410

ABSTRACT

BACKGROUND: SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS: We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS: Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS: The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.


Subject(s)
COVID-19 , Thrombosis , Humans , Antibodies, Monoclonal/pharmacology , Blood Platelets/metabolism , COVID-19/metabolism , Cross-Sectional Studies , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology , Toll-Like Receptor 4/metabolism
2.
Int J Biol Sci ; 17(13): 3305-3319, 2021.
Article in English | MEDLINE | ID: covidwho-1372133

ABSTRACT

An inflammatory cytokine storm is considered an important cause of death in severely and critically ill COVID-19 patients, however, the relationship between the SARS-CoV-2 spike (S) protein and the host's inflammatory cytokine storm is not clear. Here, the qPCR results indicated that S protein induced a significantly elevated expression of multiple inflammatory factor mRNAs in peripheral blood mononuclear cells (PBMCs), whereas RS-5645 ((4-(thiophen-3-yl)-1-(p-tolyl)-1H-pyrrol-3-yl)(3,4,5-trimethoxyphenyl)methanone) attenuated the expression of the most inflammatory factor mRNAs. RS-5645 also significantly reduced the cellular ratios of CD45+/IFNγ+, CD3+/IFNγ+, CD11b+/IFNγ+, and CD56+/IFNγ+ in human PBMCs. In addition, RS-5645 effectively inhibited the activation of inflammatory cells and reduced inflammatory damage to lung tissue in mice. Sequencing results of 16S rRNA v3+v4 in mouse alveolar lavage fluid showed that there were 494 OTUs overlapping between the alveolar lavage fluid of mice that underwent S protein+ LPS-combined intervention (M) and RS-5645-treated mice (R), while R manifested 64 unique OTUs and M exhibited 610 unique OTUs. In the alveoli of group R mice, the relative abundances of microorganisms belonging to Porphyromonas, Rothia, Streptococcus, and Neisseria increased significantly, while the relative abundances of microorganisms belonging to Psychrobacter, Shimia, and Sporosarcina were significantly diminished. The results of KEGG analysis indicated that the alveolar microbiota of mice in the R group can increase translation and reduce the activity of amino acid metabolism pathways. COG analysis results indicated that the abundance of proteins involved in ribosomal structure and biogenesis related to metabolism was augmented in the alveolar microbiota of the mice in the R group, while the abundance of proteins involved in secondary metabolite biosynthesis was significantly reduced. Therefore, our research results showed that RS-5645 attenuated pulmonary inflammatory cell infiltration and the inflammatory storm induced by the S protein and LPS by modulating the pulmonary microbiota.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/prevention & control , Lipopolysaccharides/pharmacology , Lung/microbiology , Microbiota/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/physiology , Animals , Antigens, CD/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Disease Models, Animal , Humans , Interferon-gamma/immunology , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL